Hamilton paths in Cayley graphs on generalized dihedral groups
نویسندگان
چکیده
We investigate the existence of Hamilton paths in connected Cayley graphs on generalized dihedral groups. In particular, we show that a connected Cayley graph of valency at least three on a generalized dihedral group, whose order is divisible by four, is Hamiltonconnected, unless it is bipartite, in which case it is Hamilton-laceable.
منابع مشابه
On the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملHamilton cycles and paths in vertex-transitive graphs - Current directions
In this article current directions in solving Lovász’s problem about the existence of Hamilton cycles and paths in connected vertex-transitive graphs are given. © 2009 Elsevier B.V. All rights reserved. 1. Historical motivation In 1969, Lovász [59] asked whether every finite connected vertex-transitive graph has a Hamilton path, that is, a simple path going through all vertices, thus tying toge...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملOn Hamilton Circuits in Cayley Digraphs over Generalized Dihedral Groups
In this paper we prove that given a generalized dihedral group DH and a generating subset S, if S∩H 6= ∅ then the Cayley digraph → Cay(DH , S) is Hamiltonian. The proof we provide is via a recursive algorithm that produces a Hamilton circuit in the digraph.
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کامل